US009417921B2

a2z United States Patent (10) Patent No.: US 9,417,921 B2
Galdy et al. (45) Date of Patent: Aug. 16, 2016
(54) METHOD AND SYSTEM FOR A GRAPH 6,407,680 Bl 6/2002 Lai et al.
BASED VIDEO STREAMING PLATFORM 6,571,282 BL 5/2003 Bowman-Amuah
6,769,127 Bl 7/2004 Bonomi et al.
. . 7,080,153 B2 7/2006 Monteiro et al.
(71) Applicant: iStreamPlanet Co., Las Vegas, NV (US) 7325232 B2* /2008 Li€m ..ocooverevrennne. GO6F 17/5045
709/223
(72) Inventors: Alessio Galdy, Seattle, WA (US); 7,761,591 B2 7/2010 Graham
Sidharth Sapru, Redmond, WA (US) 7,925,781 Bl 4/2011 Chan et al.
8,010,830 B2 8/2011 Hotta et al.
(73) Assignee: iStreamPlanet Co., Las Vegas, NV (US) 8,015,564 B1* 9/2011 Beyer ... G067Flgﬁ8(5)
8,059,662 B2 112011 Moote et al.
(*) Notice: Subject to any disclaimer, the term of this 8135413 B2 3/2012 Dli);r:ye :
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 0 days. ontmue
OTHER PUBLICATIONS
(21) Appl. No.: 14/448,915
Liang et al, “Cross-Tree Adjustment for Spatialized Audio Streaming
(22) Filed: Jul. 31, 2014 over Networked Virtual Environments”, ACM, pp. 73-78, 2003.*
(Continued)
(65) Prior Publication Data
US 2016/0034306 Al Feb. 4, 2016 Primary Examiner — Anil Khatri
(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
b IGnot;sglb/zm (2006.01) & Eltiott, LLP
GOG6F 9/50 (2006.01) (57) ABSTRACT
GO6F 9/48 (2006.01)
(52) US.CL A method 1mp1emepted inan electror}lc device serving as an
CPC ... GOGF 9/5011 (2013.01); GOGF 914881~ Crehestrator managing video and audio stream processing of
2013.01 a streaming platform system is disclosed. The method
. . . (D) includes the electronic device receiving a request to process a
(58) Field of Class/lﬁcaqon Search/) y video source and creating a task graph based on the request,
CPC GO6' 9/5011; GO6I 17/30017; GOGF 9/4881 where the task graph is a directed acyclic graph of tasks for
USPC 718/1, 101-107, 108 processing the video source, where each node of the task
See application file for complete search history. graph represents a processing task, and where each edge of
(56) References Cited the task graph represents a data flow across two processing

U.S. PATENT DOCUMENTS

5,742,821 A * 4/1998 Prasanna GOG6F 8/451
718/102
5,913,038 A * 6/1999 Griffiths HO4N 19/00
348/E5.002
6,110,220 A * 82000 Dave GOG6F 9/4887
716/105

6,195,680 Bl 2/2001 Goldszmidt et al.

tasks and corresponding input and output of each processing
task. The method also includes the electronic device estimat-
ing resource requirements of each processing tasks, and split-
ting the task graph into a plurality of subsets, wherein each
subset corresponds to a task group to be executed by one or
more workers of a plurality of processing units of the stream-
ing platform system.

17 Claims, 16 Drawing Sheets

l Operator iput (2.9, AF calie) 130

a0
ncoming v ow | Goord

ot

Speamig Paford 100

Dutoat
data flows

Woier Chister 469

| viorker
P

US 9,417,921 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,185,908 B2* 5/2012 Taniguchi GOG6F 9/5038
709/221
8,589,992 B2 11/2013 Babic
8,607,091 B2 12/2013 Asbun et al.
8,745,628 B2* 6/2014 Buco GOG6F 9/5038
705/7.22
8,752,113 B1* 6/2014 Goodccceuei. HO4N 19/40
725/115
8,768,048 Bl1* 7/2014 Kwatra GO6K 9/72
382/159
8,959,370 B2* 2/2015 Zomaya 713/300
8,984,520 B2* 3/2015 Liu ... GO6F 1/3203
713/300
9,038,086 B2* 5/2015 Dees, Jr. GO6F 11/0709
714/25

2003/0142670 Al
2003/0163829 Al
2003/0208638 Al
2004/0047354 Al
2004/0117427 Al
2004/0128386 Al
2006/0195602 Al
2007/0038567 Al
2007/0078768 Al
2007/0101379 Al
2007/0127667 Al
2007/0153679 Al
2007/0237185 Al
2008/0187285 Al
2008/0225698 Al
2008/0307258 Al
2009/0070827 Al
2009/0083279 Al
2009/0254952 Al
2009/0304004 Al
2010/0122040 Al
2011/0022689 Al
2011/0154358 Al
2011/0167304 Al
2011/0246621 Al
2011/0296473 Al
2015/0103837 Al
2016/0036693 Al
2016/0036886 Al

OTHER PUBLICATIONS

7/2003 Gould et al.
8/2003 Coufal et al.
11/2003 Abrams et al.
3/2004 Slater et al.
6/2004 Allen et al.
7/2004 Oomoto et al.
8/2006 Shibata et al.
2/2007 Allaire et al.
4/2007 Dawson
5/2007 Perriera
6/2007 Rachamadugu
7/2007 Jost et al.
10/2007 Perriera et al.
8/2008 Thekkethil
9/2008 Smith et al.
12/2008 Challenger et al.
3/2009 Barroso
3/2009 Hasek
10/2009 Sridhar et al.
12/2009 Huynh Van et al.
5/2010 Asai et al.
1/2011 Piepenbrink et al.
6/2011 Di Balsamo et al.
7/2011 Asbun et al.
10/2011 May, Jr.
12/2011 Babic
4/2015 Dutta et al.
2/2016 Galdy et al.
2/2016 Tto

Igbal et al, “An Analytical Approach to Model Adaptive Video
Streaming and Delivery” ACM, pp. 55-58, 2010.*

Chen et al, “A Directed Acyclic Graph based Detection for RBAC
Based Secure Interoperation”, IEEE, pp. 759-764, 2009 .*

Tao et al, “Directed Acyclic Graph Version Model Applied in Product
Structure Configuration”, IEEE, pp. 1-4, 2008.*

Rao et al, “Association Rule Mining Using FPTree as Directed
Acyclic Graph”, IEEE, pp. 202-207, 2012.*

Roig et al, “A New Task Graph Model for Mapping Message Passing
Applications”, IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 18, No. 12, pp. 1740-1753, 2007 .*

“AT&T Enhances Its Digital Media Solutions Portfolio With New
Features That Expand Content Management and Delivery Capabili-
ties”, iStreamPlanet, Articles, http://www.istreamplanet.com/
Newsltem.aspx?nid=113, (Apr. 13, 2010), 2 pages.

“iStreamPlanet Announces Flash Media Server 3.5 and HTTP
Dynamic Streaming Support for the Adobe Flash Platform”,
iStreamPlanet, Articles, http://www.istreamplanet.com/Newsltem.
aspx?nid=115, (May 11, 2010), 2 pages.

“iStreamPlanet announces official integration of Microsoft
Silverlight Rough Cut Editor (RCE) into its Video Workflow Auto-
mation Platform (VWAP)”, iStreamPlanet, Articles, http://www.
istreamplanet.com/Newsltem.aspx?nid=110, (Mar. 12, 2010), 2
pages.

“iStreamPlanet announces Release of Its Video Workflow Automa-
tion Platform”, iStreamPlanet, Articles, http://www.istreamplanet.
com/Newsltem.aspx?nid=107, (Mar. 15, 2010), 2 pages.
“iStreamPlanet Announces Support for Microsoft Silverlight 47,
iStreamPlanet, Articles, http://www.istreamplanet.com/Newsltem.
aspx?nid=111, (Apr. 13, 2010), 2 pages.

“iStreamPlanet selected by NBC Sports to Provide Live Web Broad-
cast Experience of The 2010 US Open Golf Tournament at Pebble
Beach and Championships 2010 at Wimbledon”, iStreamPlanet,
Articles, http://www.istreamplanet.com/NewsItem.aspx?nid=120,
(Jun. 29, 2010), 2 pages.

“Record Interactive and Online Viewing for CTVOlympics.ca &
RDSolympiques.ca: The Vancouver 2010 Olympic Winter Games in
Review”, iStreamPlanet, Articles, http://www.istreamplanet.com/
Newsltem.aspx?nid=109, (Mar. 18, 2010), 2 pages.

“Spinnaker HD/7100”, Inlet Technologies, www.InletHD.com.,
(May 2010), 2 pages.

“Spinnaker HD-X/81007, Inlet Technologies, www.InletHD.com.,
(May 2010), 2 pages.

“Spinnaker IP/60007, Inlet Technologies, www.InletHD.com., (May
2010), 2 pages.

Office Action, U.S. Appl. No. 12/789,106, dated Apr. 11, 2012, 26
pages.

Final Office Action, U.S. Appl. No. 12/789,106, dated Aug. 27,2012,
30 pages.

Notice of Allowance, U.S. Appl. No. 12/789,106, dated Jul. 5, 2013,
22 pages.

Non-Final Office Action, U.S. Appl. No. 14/448,996, dated Mar. 15,
2016, 22 pages.

Notice of Allowance, U.S. Appl. No. 14/708,135, dated Mar. 21,
2016, 30 pages.

* cited by examiner

US 9,417,921 B2

Sheet 1 of 16

Aug. 16, 2016

U.S. Patent

061 (sweass
di g8}
SUORRUASE(]
COpIA

12D
SMO}} B1ep
ity

.

wor |
soepo |
wding |
weayg |

4

07 uuopeld buwsasg

ARIIE
11111111 - TOT smsng esiom {dmoeg) _
! — — — _
—P 89t voL 28} |
“ | I84IOM FENIGAN STRIOAN _
| o T T e e e L T LT !
| 1
“ 0CT Jasnys oviop (At}
— 25t Tt ¥St F
JORIOA SO0 JEHIGAL
O] M0y
JOHUCT
28t
SO} BIED
v papngiasig
(21 smisn0 9t 8d
JOWASAU0IC JOYRABAYIC)
T —
- 5 A
| L7 Jjeuipioo) | Moy epep Buioouy Q0B
vl raa 7t | uigeng re I wnduy
JORRHSAY0I0 soensayin] 00 e ———— | | weeng

£1 {anen jgy “Be) induy wopeied) _

DT (swieass o
“fa) 82UN0G 08DIA

US 9,417,921 B2

Sheet 2 of 16

Aug. 16, 2016

U.S. Patent

002

¢ "Old

Y A
Y OL POIED0)lY 5] I UBUAA JOSANS YoR T jO snels oyl soiepdn]
¢ie | puy ydesg sy 10 198GNg YORT JO SMEIS Y SRIQ)S JOIBNSAU0IC BYJ |
UOISIAS *l
JBYE BjBIUESs-aYy "EISMIOM SIOLU JO QU0

— e —d &G pEnoexa eq 03 dnoud ¥EB) B O] SPUCESBLIn0 1@sans yore 'ydes
UL §0 s1esgns sidpinu o ydest ywsel syl sds JoIBASBUMD SU L

oLz 4
B

ql.wvmmm 130 uswannbay ASUBpUnpD Y JO/DUY USWBINDBY S0JN050Y

|
|
_
_ _. palBUsST ey uD poseq ydedn ¥SEe | SH%IAY JOIBASOYDI(BY _).I._
goz—"—_ ~ - T T 7
_
|
|

ydelsy yse | syl 0 yse] yoed o (vogdwnsuo)
1 ®swnosay Buindwio) ‘sbesn uipimpueg uonesiunuwe ebesn
202 abeioig “Be) suswsinbay a0IN0Say $SIRWINGT I0IENSSUNID By

S EEEEEEr K

s} yoeg 0 ndinognduy Buipuodsalion puy SNSE | OM] SSOIDY MO
BieQ v swesaidey ydeus) sy 30 80p3 yoeg puy yse] Buissesoid v sjuasssdey
\ ydedsy sl 1O 2PON UDET SR SHSE L 10 ydeloy onoAny paiosli(v St ydesn
v0c MSB] U] SAUAA Gsenbay al] ug paseg ydein jsa |\ $8jesln) JojEAsaysI(Bu .

»

(suonelad Bulisigng padisa] ‘Buipoosuel | oama
JOIPYY DBESA(] JON 40 UoiasU) Juswasiiaape/uonden Buljgeus
207 — ‘uoneoe ‘adfd L enng oopia B a) e04nog ospia eyl Buiquose

siglawieied BUBIUOD 1s8nbay a4 ‘8oinoS DBPIA Y SSBI0I
0} 1senbay v $8AI808 Yy LUoHEld DUlLesns v 10 J0IBAS8YDI() WY

US 9,417,921 B2

Sheet 3 of 16

Aug. 16, 2016

U.S. Patent

GC BUsng @
. oo eieoapip e
9t Ol TETouekeT0aplA @ TEe zieheioapp e
ST G ok copip e ZTEC | ifeoopip e
GEC paske ospin e et opny e
T @,w indup e amlz ndup e
nds dnoigy ssey Aejduaxg PZE dnoug gL TLE dnoig yse)
FIT dnossy yse |
g3 'Ol
FEE e — T ¢ Jafe] oI T~
C5E UOISInSY \ WEeusng € FEEES O — N dnoss v
\ AU N T dnougy yse
ydessy ysej Aejdiiexs . ﬁ 50T 7 JoAET 09D ST |4 _.\. ¢ie D USEY
S / 76T 1 Jake oapip H\ e
[t . ey £ - -
Ve "Oid

£ G Jofe 0apip

\ TET 4 1adrT oapip

36T JoUSANY e TEF ¢ iohe Gapin

3
«/ C5C 7 18AET 08DIA

7E0 | seheT oapiA
LEC olpny

I~
& <3
o
«©5
[
@
B
<
-4
fw
{
=
>

6T ydesny ysej Arydusxg

US 9,417,921 B2

Sheet 4 of 16

Aug. 16, 2016

U.S. Patent

gy "Old

2oy Jeysiand
10 Mo ByRp Indu sgour Buiag
|, JBAET 0BDIA JO MOy B1Ep IR0

|

£C | Jake oapip

GBL S9SN

5% ssusignd o moy siep nduy ue
Bulag JeART GIpny 10 MOy BIEE INAING

[T% sohe oipny

Yy "Oid

g0y~ ;

ooy — dan

. \“ a1y “
005 sy S1-93d

US 9,417,921 B2

Sheet 5 of 16

Aug. 16, 2016

U.S. Patent

L einpey uodn uejsel |

P JOJBISBUDIC B

G "Old

UG O WSl @8nes L
pue {se)ssaonid : P
Buiun; ¥6e3 sIoHUcLY | 7

G G0
IOIBNSBYRI0

\\\lnll/ B \\L\\,
g 7 Tl

AP,
JOIRBSBYNG

wrr

¥t &
IOVBASBURIO JOTRASBY0IC

A07 uuopeld Buueaag

i

O
L
proied

@

SHOAA

{8104 S JRICM
uo poseq 69}
SOUSHSIBELD
JO%IOM

U0 paseq dnoib
¥SE] B SUBI0
oM Byl 7

IO ASSUDIO B |
wiol dnouB yeeyue
$1550081 S8%IN0S3

FOERAR

UIiM JBHI0M

‘ydesd

WS} 843 U0 8pCu

e o3 Bupuodsauos
sge00id yoes
‘dneil s8] s W
yeu ad auo ‘dnoub
WEB] BU} 811098

o {saisseonid
Bujuuni ¥se)
SSIRIULOIOM ¢

US 9,417,921 B2

Sheet 6 of 16

Aug. 16, 2016

U.S. Patent

ﬁ {sesdxe Jun e 0 suaddey waas ug “B'8)
_ “mEm_som%coomEmm%moﬁ%c%waﬂwm%ESQD _

‘ydedsy ¥se g Ul JO 8pON V¥ 0L Buipucdseuo e v S8INoexT
_— S88304¢ Buuuny ¥se] OB usUAl ‘dnois) ¥SE | pBlEsOlY BU L
809 JINDYXTY 0 S98SA00L BUIUNY ¥SB 1 810N JO BU(SSIRIIU] JORIOAA BYL

1

(Mdesp yse) syer g O Ydedn 0jodoy pejosd v IO 19sang v
04 spuodssun dnois ¥SE L SU L SUBUAR ISMIDAA UL JO ShilsusioRieyD
909 | uey Aeiued 15897 Iy PesEq S UOBESOIY UL SIOUA JOIBHSSYSI() BUL
WIOAY EDHOAA QUL 104 PRIBDOINY dNoIG SR S| SOAISIONM JOMIOAR BUL

i

JOIRAISOUDIC) UY WC4 dnou yse L v Sisenhen oMo ¥
209 — |

by

009

US 9,417,921 B2

Sheet 7 of 16

Aug. 16, 2016

U.S. Patent

Vol JHIOM

[0

22un0s8y [leuBlo

777 aimg wawbes >

76/ BI0I8
Bas {200} Gl 7 80400504 |
30 BjRp Indul ejeckdey ¢ |

7 B3IN0%8)

30 Ado jeoo) s
Wi speas ssanoid
J/ Buuina ysey ey v

251 18I0

~

804n0say Adoen

¥GL2Z

L#

281
aimg wawbeg

mﬂ wmmocu& \m
Buiuuny wse |

AN Hz2 4 25055 swibss
03 siuod uoyniose:
“Bra) 7 somnosal

TR W
IOIBRSAYDIO

30 AdOD GIBJUOS 10U
s50p 2018 uswibas sy
{SN(10 JOIBASSUDIO
oy wioy "Ba) soniss
AnsiBai omun0s8] B W

9c1 1d
IRISBHOIO

T

Vet
JOIBNSBYNIO

7 80081 10 UONIeSaS
BOUN0SRS UIRKQ 7

F243
IRASBYRIC

701 ukogeld Buueang

ydadiysey oy U yse R §0

{7 somoses B8 aanese
pelieu B pess 0f sjsenba
sseo0sd Buuni ysB Y -

US 9,417,921 B2

Sheet 8 of 16

Aug. 16, 2016

U.S. Patent

008

2 'Old
. wse | ey Bunnoexg ul 2018 weswifag syl 0 Bl sul 8Zinn
219 a
FOAN DY L
018 1 10 su018 Wwewbeg ey OJU] 80IN0seY PEAOSEY Byl IO Bieg eroydey

!

USHEOGT 924N0% W SBDIADIA UDIUAA ‘Soindeg Ansibay
[0% — SRUNOSEY Y WIDI4 BDIN0SSY SUL JO UOHN0SSY SIN0SaY LBIGD

oi

S4A \ JON 0 18NI0AN YL JO 8I01S uswbag
L W UIIAR 5] 90UN0S8Y 84] JSUISUAA QUL
a0R

!

WSE L SU] 8IN0exT o) painbey suinosasy v o sdep 199 esleuwiriey

P ndug syl ‘Oise | ey oy Buddews) apon ey of oBp3 Buluoou) ayy of
¢l Buipuodsauon 198 Bueied induy uy peey ‘ebpg Suiucou; Youg Jo4

US 9,417,921 B2

Sheet 9 of 16

Aug. 16, 2016

U.S. Patent

6 'Ol

751 JONIOM

g4l

007 uuoped Buntessg

Ty 0 90In0s3Y
0 = 4 752
L o uswhes [
B0INGSBI G} LIOJOSULICO - \
ozl Buiey ! e k
- saaogs wewhes ey oy ,,
| Peidng 81 D 80N0SeY 'y | : M 0%Z sseo0id
T 80INOSE! | 1 Buuny wse
ye 0} BIED SOHM pue | I7
S $8)28.0 869004 |
Buguuns yse} sy} ¢ |
1 2G4 Bi0le ndine o} |
jusuifies jo toa.aw (D sainosel “6'8) somosel |
y auy 03 © Bugddews POILEL ¥ 818810 0} S}Senba/ |
JHERSOU0I0 BiR soned Bui o
e sseocid Busiuni ¥sey | |
7T Jesniny 9l 9d Fa)eames hasibas | LT "
IOVBASOUD HASOUIIO SoMNDS8I B 01 1)
| onowmsin e
JCRESBUDIO JOIRHSALDIO

US 9,417,921 B2

Sheet 10 of 16

Aug. 16, 2016

U.S. Patent

BUILIM BIEE LN B1RIBHSY _

0L "9Oid

“gyduico Bugeaydad

"BOINOSBY 8] 04 UOCHIBULOT uonrRolday

r— — — U v Buiney 2u01g wswBeg uoed o 80in0say syl O ele aeosday
104

- RNIOA BY1 O 24015 mswdeg v U a0unosey ey s1esin
2001

wPIsAs wuoneld Buluesng
5004 — 1 U K eoinies Ansiay eounnsoy v Ul enessy ouy seisifey

}

abipg BucBing sy of
7001 — Suipucdsalos BB INAING Uy 01 sdei 82IN0SEY Sy ‘B0IN0say
ﬁ Y 81eslsy o 1senbey ‘epon sl uink4 eBpl Buiclhing yoe3 o4

US 9,417,921 B2

Sheet 11 of 16

Aug. 16, 2016

U.S. Patent

JRE

G&T (sweags
di "69)
BOgeUNSa(
0BPIA
A‘!‘-‘i

-

¥er
JOHIOM

2t
JOYOM

/

80T Mol

18] 1Sesin

/ pangiRsIy

e fnoues 4an
Bayiogncmsig {oe
weens

o} Joinquisic)
Weang

_!NE {inoue 401

— @Gl
P SO
SO} BIEp
nding
G871 smoy
1 Blle}
r-r--— -~ -~ -~"%r¥r-"-~"-""=-—-—"-""--"F7-""-""7"7="—""7="=7=
[ael
| SIOMGUISID Wesss
I ypm poppifaguy
_ IO}BIBAY0I0
I
I
I
I A v
ol T Joisnny JCiRisayoi(
&0l w [
goegagy b e _—r i
ey b 743 WN"\
WD w _ JORAS3UNN0 JOYEASAUN0
T T T
e e e e
TOTT wioneid Bunsesns

i
IBouRIRg pEOT

L0} M0
BJE(1Seain
Sunsioou

011 A01BUILO0:) wiRrang

b7
L gopgmu
I ndy
1 weang

R

i
{swieals 4 “a)
BN0G OBDIA

i

US 9,417,921 B2

Sheet 12 of 16

Aug. 16, 2016

U.S. Patent

¢l "Old

3ol
SO

GG1 428N Jaiop (Rrewiid)

2
JONIOAR

76t
JONIOA

1 WEH'S

“BISNIOM

3l o} {sjwoy
BIED JSBOIUN

84 JO ORGP

a7 MOl
gied eemun
LRSI

{pg) B9) Jomnquisid
| (LBeyS BBUBYE LB O}
L 701 01 Buipuss woy
L (s)moy Byep JsEOLN
GL} SHUOEMS g1 1Y

TN xux

¥l amguisiy Ze1 omaqusig |, |
wesns 1

001 ubopeld Sunesss

ort
Jaoueeq peoT

101 mopd
BIR() ISEOIUN
Bupuooty

71 JOIRUIRIOND) WRBAG

‘sajeUele
oy} o} Bugoums jo
;cammaeoo 19818(1'G

- Ryngoe!
BOURLGIIBIL Y} |
Busuiopsd ssnesy |

“Aueioduse)
Ayaor souBUBIIBUL
au Aeeqz

JOINGHISID WEBHS 8y}
Ul PRIEI0SSE ISTUMIA
£ 10 ABAROE SIUBUUEBW

g {0 UDfIBR 10818 Y

(o1

71} 8oUR[E] PEV]
B 01 S|JISIA Bpow
BINR} 2 S1EDIL ¢

US 9,417,921 B2

Sheet 13 of 16

Aug. 16, 2016

U.S. Patent

€L '9ld

"DIUISYY 94] WiDld MOl
Ble(] ISEOIUN) BY L %OBQ SSUOIMS JosURIEG DBOT 8UL 1BYL DS AEaH S| ¥ JByL
el SSIRIPU JOINGUISI] WESNS 84 ‘ALAIOY SoUBUSIUR aU] IO uonsiduc) By _

!

"SIORIOAA
- "1 ®ui0j MmO BIE(ISEOIUN BU1 JO UCHNGHISI] SHBH JOINGUISI(LWESAS By |

i

MO 4
oieL 7 mea seaun sy 0 Buyoumg O uolsidwoD S109j8(J0INGUISIC WSS UL

1

JOINGUISICY WEBNS SIBLIBYY UY 01 MOi4 BIB(] ISBOIUN SU] UOIMS O Jacureg
| peoteyL sesneq wlum (sfIed agoid st sedueleg peo dlpolisg Bujes
Q0T AQ IO 18D IdY 12e0 Ag "5'0) apow sinjie.] v SSIBUIBU JOINGIISIC WesNS Byl

_ T T TRustiUodaug projD eu L JO (siidy LA SUCHOEISuY
ubnouy] *5'@) JoINGIISI] WeSHS SlBuISlY Uy 01 MOl BiB(] 15BN _
gg) ~] UL YSUMS 01 JSOUBIBE PEOT BYL MOl OL S| SWiL JO POUSY BUL BIBU
S J0 potieg ¥ 10d MINIDY adueuBuEly o sKelag lomquisg weans au. |

IOINGUISIC WESAS S UIAL POIBIDOSSY 1SOH SIf 10 suoepy
zoel | [BOHIA Y UD AlAOY SoUBURSILIER Y JO LORBIUY SI9910(] JOINGUISIQ WEBNS ¥

00ct

US 9,417,921 B2

Sheet 14 of 16

Aug. 16, 2016

U.S. Patent

Pl Old

_ T | “ | I . | |
vl | T ~ | T _
| {f05u9s ‘1od | _ 107} | I T | | GOkl _
| joeiedpeuss uod gg _ (uoydos _ “frg | (xepim
o g ! sopeds ‘s | e oo | Jso0ieni 2 o)
Hun a3ep sfiesos “0e) m ‘ , | Isuun somep O OBIA |
SHUN 82IABR (/] O1PRY (S)IOAIBOSURE | SSBIBIAN
b suun somep o o0 | | | | | | |
S S S | U R SR
10BULIDDIIY
oupL

S

. Nﬁw) L _ O _

{00z poursw Buwusoped) iz yun somap Aeidsic] .

PO JOLHSBLOI (8)1058800.d “ Jojpue 18jo00 feydsic |

Lo e o o o e -

2OvL Aowep

00vL

US 9,417,921 B2

Sheet 15 of 16

Aug. 16, 2016

U.S. Patent

gL "old

| : | _ | m i _ _
&t | TRET | | _
| ostias "o _ | Amco\, awowoé | | 9051 | _ Qm%mmr _
| jeiesedeuas ‘uod gsn | S b (essues “Ba) I XERI
! _ Jeyeads “Fa) m , | i00i8nIg "4l aipa B9) _
Hun eopep abeis ey | SpUn 8oMep ot opny | SHUIT OASH O} OBPIA (s)onsosuel] sseiaap |
b syun somep o/ BUID | s “ e | | | _ : "
S T _ RN B R
1OBULOTIoN]
oigL -
=t
Z251 |
S ¥061

{00g potpew « L0 b somep Aedsig "

Buiuiopiad) sinpop IS0 (5}10852004 “ 10/pue Jeyonued Aedsiq |

I, .._

TOGT AoLusyy

0ast

US 9,417,921 B2

Sheet 16 of 16

Aug. 16, 2016

U.S. Patent

g9l "Oid

" L I | | . ! _ |
] _ T | | EaT _
| (10sups ‘Lod _ I 2084 | | e _ _ [|
| jeyeiedizuas ‘pod gon _ (uoydosos b (eowes “Ba) _ brepith
1 v SN seyeeds “Ga) | , b ooenig it 1am 9)
Hun eoprep sbei0rs “0s)) _ SPUN 808P O/} oIpNYy | Isyun soiap 0 09pi {s)oaposues | S5ajeIA |
b syun somep ot 8O | | _ | | | _ , i
N I _ N IR
1DRLILOD IS
olgL

—I amn=ommm b |

7201 L | T _

{poet poysw Butuioyad) , Emw | jun eonep Aeydsicy |

BINpOJ JONGUISI WeBg (s)iossaotig “ sofpue 190500 heidsiq |

b o e o o e e e J

€057 Aowsyy

008t

US 9,417,921 B2

1
METHOD AND SYSTEM FOR A GRAPH
BASED VIDEO STREAMING PLATFORM

RELATED APPLICATIONS

This application is related to co-pending U.S. application
Ser. No. 14/448,981, entitled “Method and System for Coor-
dinating Stream Processing at a Video Streaming Platform,”
and co-pending U.S. application Ser. No. 14/448,993 entitled
“Method and System for Ensuring Reliability of Unicast
Video Streaming at a Video Streaming Platform,” both filed
herewith, which are incorporated herein by reference.

FIELD OF INVENTION

The embodiments of the invention are related to the field of
delivering media contents over a network cloud. More spe-
cifically, the embodiments of the invention relate to methods
and systems for supporting a video streaming platform in a
cloud computing environment.

BACKGROUND

Cloud computing is changing the way that enterprises and
consumers utilize applications and carrying on their tasks. In
cloud computing, data and applications are stored over the
Internet instead of local storage, and instead of owning all the
hardware and software that data and applications reside, an
enterprise or a consumer (the “client” or “tenant™) utilizes
some or majority of the needed hardware and software owned
by a cloud provider to store the data and run the applications.
Relying on sharing of resources among numerous clients, the
cloud computing infrastructure (sometimes referred to as
Infrastructure as a service (laaS)) satisfies elastic demand
spikes and achieves economies of scale thus becoming popu-
lar in various industries.

Efficient media content (e.g., video/audio) processing via
cloud-hosted services has the potential of revolutionize the
entertainment industry, sports industry and other related
domains. Yet, it is challenging to process media contents (e.g.,
video/audio) efficiently and flexibly in a cloud computing
environment, especially in real time streaming scenarios. In
an laaS model, computing resources are often offered as a
number of virtual machines to a client requesting delivery of
the media content, and a hypervisor manages the offered
virtual machines. The virtual machines may reside on a com-
puting device hosting applications of other clients, thus the
virtual machines may become unavailable or suffer degraded
performance due to activities of other clients or maintenance
of the cloud provider. In addition, the resource needs of a
media content in processing and delivering may change over
time, thus the resource requests may need be adjusted
dynamically.

Prior art has disclosed automating video work flows in a
video streaming platform, see for example, U.S. patent appli-
cation Ser. No. 12/789,024 by Mio Babic, entitled “Video
Workflow Automation Platform,” and U.S. Pat. No. 8,589,
992 by Mio Babic, entitled “Video Workflow Automation
Platform for Publishing a Video Feed in Multiple Formats.”

SUMMARY

In one embodiment, a method is implemented in an elec-
tronic device serving as an orchestrator managing video and
audio stream processing of a streaming platform system. The
method includes the electronic device receiving a request to
process a video source, the request containing parameters

10

15

20

25

30

35

40

45

50

55

60

65

2

describing the video source. The method also includes the
electronic device creating a task graph based on the request,
where the task graph is a directed acyclic graph of tasks for
processing the video source, where each node of the task
graph represents a processing task, and where each edge of
the task graph represents a data flow across two processing
tasks and corresponding input and output of each processing
task. The method also includes the electronic device estimat-
ing resource requirements of each processing task, and split-
ting the task graph into a plurality of subsets, where each
subset corresponds to a task group to be executed by one or
more workers of a plurality of workers, where each worker is
a processing unit of the streaming platform system.

In another embodiment, an electronic device serves as an
orchestrator managing video and audio stream processing of
a streaming platform system. The electronic device contains
a non-transitory machine-readable storage medium to store
the orchestrator and a processor coupled to the non-transitory
machine-readable storage medium. The processor to execute
the orchestrator and the orchestrator is configured to: receive
a request to process a video source, the request containing
parameters describing the video source; create a task graph
based on the request, where the task graph is a directed acyclic
graph of tasks for processing the video source, where each
node of the task graph represents a processing task, and where
each edge of the task graph represents a data flow across two
processing tasks and corresponding input and output of each
processing task; estimate resource requirements of each pro-
cessing task; and split the task graph into a plurality of sub-
sets, where each subset corresponds to a task group to be
executed by one or more workers of a plurality of workers,
where each worker is a processing unit of the streaming
platform system.

In a further embodiment, a non-transitory machine-read-
able medium stores instructions for managing video and
audio stream processing of a streaming platform system. The
instructions stored by the non-transitory machine-readable
medium, when executed by a processor, cause the processor
to perform operations in an electronic device serving as an
orchestrator the managing video and audio stream processing
of the streaming platform system. The operations include
receiving a request to process a video source, the request
containing parameters describing the video source. The
operations further include creating a task graph based on the
request, where the task graph is a directed acyclic graph of
tasks for processing the video source, where each node of the
task graph represents a processing task, and where each edge
of'the task graph represents a data flow across two processing
tasks and corresponding input and output of each processing
task. The operations further include estimating resource
requirements of each processing task and splitting the task
graph into a plurality of subsets, where each subset corre-
sponds to a task group to be executed by one or more workers
of a plurality of workers, where each worker is a processing
unit of the streaming platform system.

Embodiments of the invention aim at flexibly processing
media content such as real time video and audio streams in a
network cloud and the created task graph allows the orches-
trator to coordinate more efficiently with the workers in pro-
cessing the video and audio streams and permits the stream-
ing platform to operate efficiently and reliably using a wide
range of cloud infrastructure.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying

US 9,417,921 B2

3

drawings in which like references indicate similar elements.
It should be noted that different references to “an” or “one”
embodiment in this specification are not necessarily to the
same embodiment, and such references mean at least one.
Further, when a particular feature, structure, or characteristic
is described in connection with an embodiment, it is submit-
ted that it is within the knowledge of one skilled in the art to
affect such feature, structure, or characteristic in connection
with other embodiments whether or not explicitly described.

FIG. 1 illustrates a video streaming platform in a cloud
computing environment according to one embodiment of the
invention.

FIG. 2 is a flow diagram illustrating the method of creating
a distributed graph of tasks at a video streaming platformin a
cloud computing environment according to one embodiment
of the invention.

FIG. 3A illustrates an exemplary task graph according to
one embodiment of the invention.

FIG. 3B illustrates a task graph revision according to one
embodiment of the invention.

FIG. 3C illustrates a task group split according to one
embodiment of the invention.

FIG. 4A illustrates headers of packets of the incoming data
flow according to one embodiment of the invention.

FIG. 4B illustrates the relationship between adjacent nodes
in a portion of a task graph according to one embodiment of
the invention.

FIG. 5 illustrates coordinating stream processing at a video
streaming platform in a cloud computing environment
according to one embodiment of the invention.

FIG. 6 is a flow diagram illustrating the operations of a
worker in coordination with an orchestrator of a streaming
platform according to one embodiment of the invention.

FIG. 7 illustrates the execution of a task running process
reading an input at a worker according to one embodiment of
the invention.

FIG. 8 is a flow diagram illustrating the execution of a task
running process reading an input at a worker according to one
embodiment of the invention.

FIG. 9 illustrates the execution of a task running process
producing an output at a worker according to one embodi-
ment of the invention.

FIG.10is a flow diagram illustrating the execution of a task
running process producing an output at a worker according to
one embodiment of the invention.

FIG. 11 illustrates a video streaming platform for unicast
video in a cloud computing environment according to one
embodiment of the invention.

FIG. 12 illustrates interaction of a load balancer and a set of
stream distributors according to one embodiment of the
invention.

FIG. 13 is a flow diagram illustrating operations on a
stream distributor of a streaming platform in a cloud comput-
ing environment upon detecting initiation of a maintenance
activity according to one embodiment of the invention.

FIG. 14 is a block diagram illustrating an electronic device
that may serve as an orchestrator of a streaming platform in a
cloud computing environment according to one embodiment
of the invention.

FIG. 15 is a block diagram illustrating an electronic device
that may serve as a worker of a streaming platform in a cloud
computing environment according to one embodiment of the
invention.

FIG. 16 is a block diagram illustrating an electronic device
that may serve as a stream distributor of a streaming platform
in a cloud computing environment according to one embodi-
ment of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth. However, it is understood that embodiments of the
invention may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description. It will be appreciated,
however, by one skilled in the art that the invention may be
practiced without such specific details. Those of ordinary
skill in the art, with the included descriptions, will be able to
implement appropriate functionality without undue experi-
mentation.

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to effect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

Bracketed text and blocks with dashed borders (e.g., large
dashes, small dashes, dot-dash, and dots) may be used herein
to illustrate optional operations that add additional features to
embodiments of the invention. However, such notation
should not be taken to mean that these are the only options or
optional operations, and/or that blocks with solid borders are
not optional in certain embodiments of the invention.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives, may
be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” is used to
indicate that two or more elements, which may or may not be
in direct physical or electrical contact with each other, co-
operate or interact with each other. “Connected” is used to
indicate the establishment of communication between two or
more elements that are coupled with each other. A “set,” as
used herein refers to any positive whole number of items
including one item.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “receiving,” “monitoring,” “creating,” “estimating,” “split-
ting,” “updating,” “executing,” “selecting,” “initiating,”

29 4¢ 29 4

“indicating,” “reading,” “writing,” “registering,” “replicat-
ing,” “receiving,” “communicating,” “presenting,” “provi-
sioning,” “publishing,” “processing,” “providing,” “comput-

29 <

ing,” “calculating,” “determining,” “displaying,” or the like,
refer to the actions and processes of a computing system, or
similar electronic computing systems, that manipulates and
transforms data represented as physical (e.g., electronic)
quantities within the computing system’s registers and
memories into other data similarly represented as physical
quantities within the computing system memories or registers
or other such information storage, transmission or display
devices.

An electronic device stores and transmits (internally and/or
with other electronic devices over a network) code (which is
composed of software instructions and which is sometimes
referred to as computer program code or a computer program)

US 9,417,921 B2

5

and/or data using machine-readable media (also called com-
puter-readable media), such as machine-readable storage
media (e.g., magnetic disks, optical disks, read only memory
(ROM), flash memory devices, phase change memory) and
machine-readable transmission media (also called a carrier)
(e.g., electrical, optical, radio, acoustical or other form of
propagated signals—such as carrier waves, infrared signals).
Thus, an electronic device (e.g., a computer) includes hard-
ware and software, such as a set of one or more processors
coupled to one or more machine-readable storage media to
store code for execution on the set of processors and/or to
store data. For instance, an electronic device may include
non-transitory machine-readable memory containing the
code since the non-transitory machine-readable memory can
persist code/data even when the electronic device is turned off
(when power is removed), and while the electronic device is
turned on that part of the code that is to be executed by the
processor(s) of that electronic device is typically copied from
the slower non-transitory machine-readable memory into
transitory machine-readable memory (e.g., dynamic random
access memory (DRAM), static random access memory
(SRAM)) of that electronic device. Typical electronic devices
also include a set or one or more physical network interface(s)
to establish network connections (to transmit and/or receive
code and/or data using propagating signals) with other elec-
tronic devices. One or more parts of an embodiment of the
invention may be implemented using different combinations
of software, firmware, and/or hardware.

A Video Streaming Platform in a Cloud Computing Envi-
ronment

FIG. 1 illustrates a video streaming platform in a cloud
computing environment according to one embodiment of the
invention. Streaming platform 100 is a computing system,
and it contains one or more machines including one or more
server computers, gateways, routers, or other computing/net-
working electronic devices. A streaming platform operator
manages operations of streaming platform 100, yet some or
all of the electronic devices within the streaming platform 100
may be owned by a third party (e.g., a cloud provider/operator
such as Amazon.com®, Microsoft®, Rackspace®, or Com-
puter Sciences Corporation (CSC®)). That is, a cloud com-
puting environment operated by a cloud provider/operator
may host the streaming platform.

Streaming platform 100 receives its data flow input from
video source 110. Video source 110 contains one or more
Internet Packet (IP) packet streams in one embodiment. The
1P packet streams may contain one or more live video feeds.
A live video feed may be video of a live event or live perfor-
mance, or may be video of a prerecorded event being played
back according to a schedule. The live video feed may be a
video broadcasted over cable, satellite, or over-the-air. Note
the terms “video,” “video source,” and “video feed,” as used
herein, refer to the video and corresponding audio of the
particular recorded event (e.g., TV show, performance, sport-
ing event, etc), but also may include video only. Thus the
video source (sometimes referred to as the video and audio
streams) of streaming platform 100 may contain only video.
The video source may be a webcast of a television broadcast,
such as of a sporting event, a live or recorded performance, a
live or recorded news report, or the like. A live event may also
have pre-recorded content intermingled with live media con-
tent, such as advertisements, which are played in between the
live telecast. It should be noted that the embodiments of the
invention described herein may also be used for streaming
video-on-demand (VOD).

Video source 110 may be “pushed” to streaming platform
100 where the video source is IP packet streams such as the

10

20

25

30

35

40

45

50

55

60

65

6

moving pictures expert group—transport streams (MPEG-
TS) or a type of adaptive bitrate streaming streams (streams
implemented in protocols such as MPEG-Dynamic Adaptive
Streaming over HTTP (DASH), Microsoft® Smooth Stream-
ing, or Apple® HTTP Live Streaming). The IP packet streams
logically flow to streaming platform 100 from an external
source thus video source 110 is referred to as being pushed to
streaming platform 100.

Video source 110 may also be “pulled” by a processing unit
(referred to as a worker) of streaming platform 100, where the
worker runs one or more processing tasks. The worker may
initiate a Transmission Control Protocol (TCP) connection to
an external uniform resource identifier (URI) (an external
uniform resource locator (URL) or an external uniform
resource name (URN)), and after performing a protocol hand-
shake, cause inbound IP packet streams to flow directly into
the worker for one or more processing tasks without being
processed by the optional stream input interface 102 or stream
coordinator 170. The pull of video feeds may be implemented
through the real time messaging protocol (RTMP), where the
processing task includes a RTMP capture task.

Stream input interface 102 is a logical input point for data
flows into streaming platform 100. It may not be present as a
physical entity of streaming platform 100 in one embodiment.
Incoming data flow 180 may optionally go to stream coordi-
nator 170 (the operations of stream coordinator 170 are
detailed herein below). The incoming data flow contains data
of one or more video and audio streams. In one embodiment,
the incoming data flow is transmitted in user datagram pro-
tocol (UDP) packets.

FIG. 4A illustrates headers of packets of the incoming data
flow according to one embodiment of the invention. The
packet contains an IP header at reference 408, and it has a
UDP header on top of IP header at reference 406. As a state-
less protocol, UDP is not as reliable as TCP. Thus, the packet
may optionally contain a real-time transport protocol (RTP)
header at reference 404, where the RTP header adds addition
information to allow the receiving end of the data flow to
reorder the received packet and recover from certain level of
packet loss. The packet further contains one or more MPEG-
TS packets at reference 402. During transmission, the size of
atypical UDP payload is limited to around 1,400 bytes in one
embodiment in order to minimize fragmentation within and
across public networks, which at higher video bit rates can
cause very high packet arrival rates (e.g., 25 Megabits/
sec=2232 UDP packets/sec).

While TCP is a lossless transport protocol and can be used
to transmit the incoming data flow, TCP based transmission
may come at the expense of significantly variable delay in
circumstances where network congestion may occur. In the
cloud computing environment, due to resource sharing
among multiple clients, a data flow may experience network
congestion. In addition, using TCP-based source such as
RTMP for video delivery significantly complicates the ability
to retrieve redundant input signals via multiple data flows,
since each TCP data flow comes with its own unique delay
and protocols such as RTMP do not handle transport-level
synchronization well. Thus, at a streaming platform in the
cloud computing environment, UDP is preferable in deliver-
ing video source.

The incoming data flow may be multicast or unicast. When
the incoming data flow is a multicast data flow, it sends
packets to multiple destinations simultaneously. In streaming
platform 100, the multiple destinations include multiple
workers, and incoming data flow 180 multicasts into distrib-
uted data flows 182 and is transmitted to workers 152-158.
When the incoming data flow is a unicast data flow, stream

US 9,417,921 B2

7

coordinator 170 converts the unicast data flow into distributed
data flows 182 thus workers 152-158 process them indis-
criminately.

Workers may be organized as worker clusters in a stream-
ing platform. In streaming platform 100, workers 152-158 are
in primary worker cluster 150, which contains workers
actively working on processing tasks. Workers 162-168 are in
backup worker cluster 160, which contains workers remains
standby thus provides redundancy and robustness for stream-
ing platform 100. Workers perform tasks through coordina-
tion with one or more orchestrators, which may form an
orchestrator cluster.

Orchestrator cluster 120 contains orchestrators 122-124
and orchestrator database 126 that store data for operations of
the orchestrators. The orchestrators may form working and
backup pairs within an orchestrator cluster, and the orches-
trator cluster may be paired with another orchestrator cluster
for redundancy and robustness purpose too. Orchestrator
cluster 120 receives operator input 130 and it interacts with
worker clusters 150-160 through control flow 185. Operator
input 130 may be in the form of an application programming
interface (API) call, and it may contain a request to create a
work flow for a video source in streaming platform 100. The
work flow may be referred to as a channel, each of which
represents a processing work flow that transforms an indi-
vidual incoming data stream into its configured output data
stream(s). An orchestrator may also host services responsible
for work scheduling and overall system health monitoring
and management.

Workers are coupled to one or more orchestrators, and they
execute processing tasks on the distributed data flows. The
data flows are processed and the workers produce output data
flows 184. Output data flows 184 may optionally goes
through stream output interface 109, a logical output point for
the data flows going out of streaming platform 100. Note both
stream input interface 102 and stream output interface 109
may be integrated parts of worker functions and they may not
be individual physical units of streaming platform 100.

Output data flows goes to video destination 190, which
contains one or more IP streams in one embodiment. The
output data flows may be delivered to an ingest point of a
content delivery network (CDN). A CDN is a system of
computers networked together across the Internet that coop-
erates transparently to deliver content, and may include, for
example, one or more origin content servers, web servers,
cache servers, edge servers, etc. The output data flows may
also be delivered to a video playback device directly. A single
output data flow may be delivered to multiple destinations
through multicast.

Note both workers and orchestrators of the streaming plat-
form may be run on cloud-hosted virtual machines (VMs).
The VMs are parts of the cloud computing environment host-
ing the streaming platform and they reside on computing
systems of the cloud computing environment. These comput-
ing systems are referred to as hosts of the workers and orches-
trators in the streaming platform. The hosts are managed by a
cloud provider and they may concurrently host applications
other than the streaming platform. Thus, the workers are not
dedicated to the streaming platform and they are allocated to
the streaming platform as needed and according to coordina-
tion of the orchestrators.

Overall, streaming platform 100 ingests video sources,
transcodes, and transforms the video sources into desired one
or more formats for publication and then outputs the resulting
video data. The streaming platform is a distributed architec-
ture using cloud resources, and it is a flexible, scalable, and
efficient platform for video processing.

10

15

20

25

30

35

40

45

50

55

60

o
o

8

Graph Based Video Data Flow Processing

Traditionally video processing is performed through a
batch-oriented, non-real time video on demand architecture.
In contrast, embodiments of the invention utilize a real-time
or near real-time streaming approach via a distributed graph
of tasks. The approach achieves several goals: It may mini-
mize end-to-end system latency for the video source process-
ing; it offers flexibility for deploying the streaming platform
into diverse cloud hardware infrastructures; and it allows
flexibility to achieve system reliability targets in a given cloud
hardware infrastructure.

The distributed graph of tasks is utilized in creating the
processing work flow (referred to as a channel) that trans-
forms an individual incoming data stream into its configured
output data stream(s). During channel creation, the orches-
trator is responsible for compiling a channel definition (e.g.,
using the JavaScript Objection Notation (JSON) format) into
a directed graph of tasks with associated configuration data
and for assigning those tasks into logical groups (referred to
as task groups) based on estimated resource requirements.
The available workers may then poll the orchestrator seeking
work that they have sufficient resources to handle. Once
assigned one or more task groups, a worker launches appro-
priate task running processes with the specified configura-
tion. The task running processes are then executed as part of
the graph based video data flow processing.

FIG. 2 is a flow diagram illustrating the method of creating
a distributed graph of tasks at a video streaming platformin a
cloud computing environment according to one embodiment
of the invention. Method 200 may be implemented on an
orchestrator of the video streaming platform, which also con-
tain workers as the processing units of the streaming plat-
form.

At reference 202, the orchestrator receives a request to
process a video source. The request may be received through
an operator input (e.g., an API call) as illustrated in FIG. 1.
The request containing parameters describing the video
source. The request (may be referred to as a channel creation
request) may contain a variety of parameters describing the
video source. For example, the request may contain at least
one of the following:

Mandatory parameters describing the type of the video
source (e.g., MPEG-2, MPEG-4, H.265, and etc.), and
location of the video source (e.g., ingest protocol, IP
address, URI, and etc.).

Indication of whether and how to enable subtitle process-
ing and/or enable advertisement insertion processing for
the video source.

The desired video and audio transcoding operations (e.g.,
how many audio/video layers, the desired output char-
acteristics for each such as video frame size/rate and
bitrate, the relevant portion of the incoming data flow to
use if applicable) for the video source.

The desired contention protection operations for the video
source (e.g., Microsoft© PlayReady, Adobe© Access
DRM, AES-128 Encryption for HTTP live streaming,
etc.).

The desired publishing operations to output (e.g., which
output format(s) (such as HTTP live streaming (HLS),
HTTP dynamic streaming (HDS), RTMP, or smooth
streaming) to publish, and the destination(s) to send each
output format.

Then at reference 204, the orchestrator creates a task graph
based on the received request. The task graph is a directed
acyclic graph (DAG) of tasks for processing the video source.
A DAG is a directed graph with no directed cycles. The
directed graph is formed by a collection of nodes (also

US 9,417,921 B2

9

referred to as vertices) and directed edges, each edge connect-
ing one node to another, such that there is no way to start at a
node and follow a sequence of edges that eventually loops
back to the node. Each node of the task graph represents a
processing task, and each edge represents a data flow across
two processing tasks and corresponding input and output of
each processing task.

FIG. 3A illustrates an exemplary task graph according to
one embodiment of the invention. Task graph 350 contains
one input node, input 1 at 380. The input 1 represents an input
processing task, which is to receive and prepare the video
source for further processing. The output of input 1 is sent to
nodes audio 331, and video layers 1-6 at 332-337 respec-
tively. The nodes represent processing tasks associated with
the respective audio and video layers of the video source.
After the audio and videos are processed through transcoding
operations at 332-337, the outputs are sent to the node of
publisher 386, where the processing task is to publish the
processed video source in desired output format(s) to the
desired destination(s). While the majority of the nodes (331-
337) of task graph 350 only have a single input and a single
output, the layout is for simplicity of illustration. A task graph
may contain tens or even hundreds of nodes, and each node
may have multiple inputs and multiple outputs.

FIG. 4B illustrates the relationship between adjacent nodes
in a portion of a task graph according to one embodiment of
the invention. The task graph is task graph 350 illustrated in
FIG. 3A, and the illustrated portion includes audio layer 331,
video layer 1 at 332, publisher 386, and edges 422-424. Audio
layer 331 produces one output. The output contains output
parameter 451, which is referred to by an output resource
name (output_l_resource_name) and the value is
audio_1_output. Represented by edge 422, the output of
audio layer 331 is an input of publisher 386, and that input
contains input parameter 452, which is referred to by an input
resource name (input_1_resource_name), and the value of the
input parameter to publisher 386 is the same as the value of
the output parameter 451, audio_1_output. Similarly, video
layer 1 at 332 produces an output containing output parameter
453, which is referred to as output_1_resource_name, and the
value is video_1_output. The output of video layer 1 at 332 is
another input of publisher 386, and that input contains input
parameter 454, which is referred to by
input_2_resource_name and its value is the same
(video_1_output).

Note that while the input and output parameters in the
example are single values respectively, some edges of a task
graph may contain a plurality of input parameters and/or a
plurality of output parameters, in which case the input param-
eters and output parameters are referred to as the input param-
eter set and the output parameter set respectively. Each of the
input and output resource names represents resource(s)
involved for the respective inputs and outputs. The reading
and writing of the inputs and outputs are done via API calls to
a service called the segment store that runs on every worker in
one embodiment. Further details of the operations of the
segment store are disclosed herein below.

Referring back to FIG. 2, after the task graph is created, the
orchestrator estimates resource requirements for each pro-
cessing task represented in the task graph at reference 206.
The estimation of resource requirements may be based on a
variety of factors, including one or more of the following:

Storage usage of each processing task during its execution

cycle. A processing task may store data for diagnostics
and monitoring prior, during, and after its execution, and
the total storage need and the changing storage need over
time are resource requirements to be considered.

w

10

15

20

25

30

35

40

45

50

55

60

65

10

Communication bandwidth usage of each processing task
during its execution cycle. A processing task may need
certain (changing) bandwidth for communication dur-
ing its execution cycle.

Computing resource consumption of each processing task
during its execution cycle. The computing resource con-
sumption may be an absolute or relative usage of a
central processing unit (CPU), a graphics processing
unit (GPU), or other processing units of the processing
tasks. The estimation can be complicated when the
orchestrator considers various characteristics of one or
more inputs of a processing task. For example, the esti-
mated CPU/GPU usage may vary widely with inputs
having different frame sizes, frame rates, input encod-
ing/decoding (codec) schemes, and presumed content
complexity (e.g., talking head vs. high motion sports). In
one embodiment, orchestrator may over-estimate com-
puting resource consumption of each processing task to
avoid complicated computation in making the estima-
tion and to avoid fragmentation of available computing
resources into unusably small units.

Note the estimation of resource requirements may utilize
one or more machine-learning algorithms to allow the orches-
trator make better estimation over time. In which case, an
earlier estimation of resource requirements is used for work-
ers to execute processing tasks, and the worker may provide
feedback about the accuracy of the estimation. Using the
feedback, the orchestrator may adjust its estimation of
resource requirements for a same or similar processing task or
video source in the future. The feedback loop may constantly
improve the accuracy of the estimation of resource require-
ments. Thus, the estimation may be referred to as a prediction,
which is made based on the characteristics of a video source
and the similarity of the characteristics of the video source
comparing to an earlier video source processed by the stream-
ing platform.

The flow optionally goes to reference 208, where the
orchestrator revises the task graph. The revision may be based
on the estimation of the total resource requirements of the
processing tasks for a channel. For example, the computa-
tional resource requirements for the processing tasks may be
too much for a single VM that hosts a worker being assigned
the processing tasks for the channel, thus the graph may be
revised to split the processing tasks into two groups. FIG. 3B
illustrates a task graph revision according to one embodiment
of the invention. The task graph in FIG. 3B is similar to the
one in FIG. 3A, but it has two inputs instead of one: Input 1 at
382 and input 2 at 384. The processing task of input 1 at 380
in FIG. 3A is split into two in FIG. 3B. The split may be due
to redundancy requirements of input 1 at 380 or may be done
in order to minimize the networking utilization across mul-
tiple workers (often implemented on multiple VMs in one
embodiment). For example, the orchestrator may determine
that a video processing task is too computationally intensive
to be processed by a single worker. In the example in FIGS.
3A-B, input 1 at 380 corresponds to an input of a work flow
where a single worker does not have sufficient resources to
process the entire graph. Since input redundancy is important
in this example, input 1 at 380 is cloned into two inputs, input
1-1 and input 2-2 at 382 and 384 respectively, where the two
inputs are collocated to produce outputs to respective sets of
processing tasks. Of course, the split of processing tasks for
the audio, the video layers, and the publisher may also be
performed in task graph revision as needed.

In an alternative embodiment, a video processing task is
splitinto two cooperating tasks that together achieve the same
processing results as the original task, but are assigned to two

US 9,417,921 B2

11

separate task groups for execution on two workers. In one
embodiment, a streaming video processing task can be splitin
two based on time partitioning of the task, with one task
handling half of the input data alternating with the other task
handling the remaining input data. The cloning of processing
tasks and time partition of processing tasks are only two
exemplary ways to revise task graphs, and others may be
implemented utilizing the principle of embodiments of the
invention.

The revision may also be based on a redundancy require-
ments of one or more processing tasks. For some video
source, the streaming platform is required to provide redun-
dancy in processing (e.g., the requirement is dictated through
a service level agreement (SLA) between a client and the
operator of the streaming platform). In that case, orchestrator
may tie certain tasks associated with the video source to either
a working or backup worker cluster and that will cause revi-
sion of the task graph.

Referring back to FIG. 2, the orchestrator then splits the
task graph into multiple subsets at reference 210. Each subset
of'the task graph corresponds to a task group to be executed by
one or more workers of the streaming platform. A task group
contains a set of processing tasks that the orchestrator allo-
cates to be executed by one or more workers. In one embodi-
ment, each subset of the task graph corresponds to a task
group to be executed by a single worker.

FIG. 3C illustrates a task group split according to one
embodiment of the invention. In the task group split 354, the
revised task group 350 is split into two task groups: Task
group 372 including processing tasks input 1, audio, video
layer 1-3, and publisher, and task group 374, including pro-
cessing tasks input 2, and video layer 4-7. Each of task groups
372 and 374 are to be executed by a single worker of the
streaming platform. Each worker may run on a single VM of
the cloud computing environment on which the streaming
platform is operating.

Note that after either the task graph revision at reference
208 or the task graph split at reference 210, the orchestrator
may go back to reference 206 to re-estimate the resource
requirements of processing tasks as the task graph revision
and split may impact workloads (e.g., storage usage, commu-
nication bandwidth usage, and computing resource consump-
tion) associated with processing tasks. In an alternate
embodiment, the orchestrator simply overestimates the
resource requirements of the processing tasks to allow for
changes of workloads.

Then optionally at reference 212, the orchestrator stores a
status of each subset of the task graph and updates the status
of each subset when the subset is allocated to one or more
workers for execution. In one embodiment, the orchestrator
stores the status in orchestrator database 126 as illustrated in
FIG. 1. Thus the orchestrator keeps up-to-date information of
task allocation for each video source. Note method 200 is
described using one video source, in practice, an orchestrator
may allocate workers for many video sources concurrently.

Also note that the creation, revision, and split of the task
graph is based on the request to process the video source only,
and the operations do not need the video source being avail-
able to the streaming platform. Orchestrator may perform the
operations without knowing the availability and health of the
workers of the streaming platform.

Coordinating Stream Processing At a Video Streaming
Platform

As discussed herein above, a task graph is split into mul-
tiple subsets and each subset corresponds to a task group to be
executed by one or more workers. The execution of the task
group is performed at the one or more workers with coordi-

30

40

45

55

12

nation of the orchestrator. FIG. 5 illustrates coordinating
stream processing at a video streaming platform in a cloud
computing environment according to one embodiment of the
invention. The streaming platform 100 is the same as the one
in FIG. 1, but entities not essential to the discussion of the
coordination are omitted in FIG. 5 for clarity of discussion.
Task boxes 1 to 4 illustrate the order in which operations are
performed according to one embodiment of the invention.

Worker 152 is a worker with available resources to execute
one or more processing tasks. In one embodiment, worker
152 is idle without executing any processing task. At task box
1, worker 152 requests a task group from the orchestrator. The
request may take the form of a periodic API call to the orches-
trator in one embodiment.

Attask box 2, the worker receives a task group allocated for
the worker from the orchestrator. The received data may be a
message including an identifier of the task group allocated to
the worker. The orchestrator may update the status of the task
group upon allocating the task group to the worker. The
allocation is based at least partially on characteristics of the
worker. For example, the characteristics may include:

The role of the cluster of the worker (primary cluster vs.

backup cluster).

Current and/or historical health statuses of the worker
(working function normally or having degraded perfor-
mance)

The software versions of and the functionalities supported
by the worker.

The hardware capability of the host computing devices of
the worker.

Then at task box 3, the worker initiates one or more task
running processes to execute the allocated task group. Each
task running process corresponds to one processing task in
the task group, where each processing task corresponds to a
node of the task graph created by the orchestrator. The opera-
tions to execute the allocated task group are discussed in more
details herein below. In an alternate embodiment, the worker
isolates tasks from each other during execution using lighter
weight mechanisms (e.g. application domains, containers,
etc.) instead of OS processes.

Optionally at task box 4, the orchestrator monitors the
execution of task running processes and causes them to abort
and/or restart upon failure/recovery. The worker obtains a
status of each of the task running processes during their
execution cycles from the task running processes. The health
indication of a task running processes may be updated
dynamically during its execution cycle. An updated status
may be sent to the orchestrator upon a certain event (e.g.,
failure/performance degradation of the worker) via an API
call in one embodiment. In alternative, the orchestrator may
probe the worker periodically to determine the current status
of' the task running processes. Upon determining the failure/
performance degradation of the worker, the orchestrator may
cause the task running process to abort and go through a
diagnostic procedure to restart the task running process upon
recovery. In an alternate embodiment, the worker may cause
the task running process to abort and go through the diagnos-
tic procedure to restart the test running process.

FIG. 6 is a flow diagram illustrating the operations of a
worker in coordination with an orchestrator of a streaming
platform according to one embodiment of the invention.
Method 600 may be implemented in a worker such as worker
152 as illustrated in FIG. 5.

Atreference 602, the worker requests a task group from the
orchestrator of the streaming platform. Then at reference 606,
the worker receives the task group allocated for the worker
from the orchestrator. The allocation is based at least partially

US 9,417,921 B2

13

on characteristics of the worker. The task group corresponds
to a subset of a task graph of the orchestrator. The task graph
is a directed acyclic graph of tasks as discussed herein above
in relating to FIGS. 2-4.

Referring back to FIG. 6, at reference 608, the worker
initiates one or more task running processes to execute the
allocated task group, where each task running process
executes a processing task corresponding to a node of the task
group. The execution includes at least one of (1) processing
one or more inputs corresponding to an incoming edge to the
node; and (2) producing one or more outputs corresponding
to one or more outgoing edges from the node. Thus, the
processing task may process one or more inputs without
producing any output, produce one or more outputs without
processing any input, or perform both the processing the
input(s) and producing the output(s).

At reference 610, the one or more task running processes
indicate their respective statuses during the execution cycles.
Each status may be utilized to determine aborting or restart-
ing a task running process. In one embodiment, the status is
utilized by the worker to make the determination. In an alter-
nate embodiment, the status is utilized by the orchestrator to
make the determination. The status may be updated dynami-
cally after one or more conditions are met, such as an event
happens (e.g., the process failed or its performance is
degraded) or a timer expires.

Embodiment of Executing a Task Running Process

Executing a task running process at a worker is one key
feature of the graph based video streaming platform in a cloud
computing environment. FI1G. 7 illustrates the execution of a
task running process reading an input at a worker according to
one embodiment of the invention. The streaming platform
100 is the same as the one in FIG. 1, but entities not essential
to the discussion of the coordination are omitted in FIG. 7 for
clarity of discussion. Task boxes 1 to 4 illustrate the order in
which operations are performed according to one embodi-
ment of the invention.

For executing a task running process at a worker, the task
running process interacts with a service called the segment
store that runs on each worker in one embodiment. The task
running process reads input and writes output via API calls to
the segment store. The segment store is responsible for adver-
tising locally created logical resource names with a central
resource registry, for storing a sliding window of recent data
in memory for each resource, for resolving any requests to
read logical resources via the central resource registry, and for
establishing mirror copies of logical resources in the local
segment store via a cross-VM streaming network protocol.
Note that the central resource registry is provided by a
resource registry service, and the resource registry service
may be provided by the orchestrator or adomain name system
(DNS).

By abstracting away the network protocol and name reso-
Iution of logical resource names behind the API calls to the
segment store, all processing tasks may be executed in a
location agnostic fashion, which achieves maximum flexibil-
ity by centralizing resource placement decisions within the
orchestrator’s graph compilation and resource scheduling
services. The processing tasks simply write data as necessary
to the outputs and read data as necessary from the inputs.

Note that a worker may execute multiple task running
processes, and they may be coordinated by a task manager
(not shown), a service of the worker. The task manager
spawns one task running process for each task, passing one or
more parameters (referred to as a parameter set) associated
with the task. Thus, the task manager may manage many task
running processes on a worker simultaneously.

10

15

20

25

30

35

40

45

50

55

60

65

14

The operations of a task running process are illustrated
through the task boxes 1-4. At task box 1, the task running
process 750 requests to read a named resource of the task
corresponding to the tasking running process. In this
example, the named resource is resource Z. Z is the logical
name of an input which was supplied in the processing task’s
input parameter set, which was created during graph creation
and maintained during any revision and split as discussed
above in relating to FIGS. 2-4. Task running process 750 then
looks for the named resource Z at segment store 752 of the
worker (referred to as the local segment store).

If task running process 750 finds resource Z at the local
segment store, it reads resource Z from the local segment
store as the input arrives from another processing task or the
incoming data flow for executing the task. However, task
running process 750 may not find resource Z at the local
segment store, in which case segment store 752 obtains
resource resolution of resource Z from a resource registry
service at task box 2. The resource registry service may be
provided by a central resource registry stored in orchestrator
database 126 in one embodiment. In another embodiment, the
central resource registry is stored by a DNS as discussed
herein above.

In this example, the central resource registry is stored in
orchestrator database 126, and the resolution points to seg-
ment store 772 as the location of resource Z at reference 774.
Segment store 772 is a service in another worker, worker 154.
In one embodiment, the location of resource Z is provided in
a message containing the location information using the for-
mat of IP: port from the central resource registry to segment
store 752.

Then at task box 3, segment store 752 replicates data of the
resolved resource Z into the local segment store 752 through
a replication connection to the source location at reference
774. In one embodiment, segment store 752 initiates a TCP
connection to the source location at reference 774 on the
designated IP: port location of segment store 772, and ini-
tiates a streaming resource replication connection of resource
Z.. At task box 4, the task running process 750 reads from the
local copy of resource Z in performing the task running pro-
cess to execute the task.

FIG. 8 is a flow diagram illustrating the execution of a task
running process reading an input at a worker according to one
embodiment of the invention. Method 800 is an embodiment
of operations in reference 608 of FIG. 6 according to one
embodiment of the invention. Method 800 may be performed
for each incoming edge of a node of a task graph, where the
node corresponds to the processing task performed by a
worker. Method 800 is performed by the worker, or more
specifically by a task running process and a segment store of
the worker.

At reference 802, in order to execute a processing task
corresponding to the node, for each incoming edge, the task
running process reads an input parameter set corresponding
to the incoming edge to the node from the segment store,
which stores resources of the worker. The input parameter set
maps to a resource required to execute the processing task. At
reference 806, the segment store determines whether the
resource is within the segment store of the worker (referred to
as the local segment store) or not. Ifthe resource is within the
segment store of the worker, the flow goes to reference 812,
where the segment store provides the data for the task running
process to utilize in executing the processing task.

Iftheresource is not within the segment store of the worker,
the flow goes to reference 808, where the segment store
obtains resource resolution of the resource from a registry
service, which provides a resource location of the resource.

US 9,417,921 B2

15

The registry service may be provided by a central resource
registry at the orchestrator or a DNS at a different location of
the cloud computing environment.

Atreference 810, the segment store of the worker replicates
data of the resolved resource into the segment store of the
worker through a replication connection to the source loca-
tion. As discussed herein above, the replication connection
may include a streaming resource replication connection of
the resolved resource, which may be stored in a segment store
of another worker. After the data is replicated in the local
segment store, the flow goes to reference 812 again, and the
segment store provides the (replicated) data for the task run-
ning process to utilize in executing the processing task.

In contrast to FIG. 7, FIG. 9 illustrates the execution of a
task running process producing an output at a worker accord-
ing to one embodiment of the invention. The streaming plat-
form 100 is the same as the one in FIG. 1, but entities not
essential to the discussion of the coordination are omitted in
FIG. 9 for clarity of discussion. Task boxes 1 to 4 illustrate the
order in which operations are performed according to one
embodiment of the invention.

At task box 1, task running process 750 requests to create
a named resource for output at segment store 752 of worker
152. The task running process produces output as it executes
a processing task, and the named resource is where the pro-
duced output will be referred. The named resource (referred
to as resource Q in this example) maps to an output parameter
set corresponding to the outgoing edge from the node of the
task graph.

At task box 2, segment store 752 registers resource Qto a
resource registry service. In this example, the resource regis-
try service is provided by orchestrator database 126, which
contain a central resource registry. In an alternative embodi-
ment though, the resource registry service may be provided
by a DNS or another entity within the cloud computing envi-
ronment. In one embodiment, the central resource registry
stores with a resource registration API the name of the
resource (resource Q) and its current location (e.g., using the
format of IP: port) indicating that resource Q is in segment
store 752.

Then at task box 3, the task running process creates the
named resource and writes data to resource Q 756, which is at
the local segment store (segment store 752) of worker 152. At
task box 4, if a replication connection is established for
resource Q in segment store 752, the data being written to
resource Q are copied to all segment stores having the repli-
cation connection to resource Q. Note while creating the
named resource is illustrated after registering the resource in
the figure, the operations may occur simultaneously or the
creating the named resource occurs prior to the registering the
resource in an alternative embodiment.

FIG.10is a flow diagram illustrating the execution of a task
running process producing an output at a worker according to
one embodiment of the invention. Method 1000 is an embodi-
ment of operations in reference 608 of FIG. 6 according to one
embodiment of the invention. Method 1000 may be per-
formed for each outgoing edge of a node of a task graph,
where the node corresponds to the processing task performed
by a worker. Method 1000 is performed by the worker, or
more specifically by a task running process and a segment
store of the worker.

At reference 1002, in order to execute a processing task
corresponding to the node, for each outgoing edge, the task
running process requests to create a resource, where the
resource maps to an output parameter set corresponding to the
outgoing edge from the node. At reference 1006, the segment
store registers the resource in a resource registry service,

20

30

40

45

50

16

which may reside in the orchestrator, a DNS or other entities
of the cloud computing environment.

At reference 1008, the resource is created in the segment
store of the worker. Then the processing task writes data to the
resource in executing the processing task at reference 1010.
Optionally at reference 1012, the segment store replicates
data of the resource to all segment stores having replication
connections to the resource. The writing/replicating of data is
an iterative process, thus the process does not complete until
all data to be written/replicated are finished.

Ensuring Reliability of Unicast Video Streaming

As discussed herein above, at a streaming platform in the
cloud computing environment, UDP is preferable in deliver-
ing video source data. Multicasting UDP data flows has the
advantage of simultaneously sending packets to multiple
workers thus multiple workers may execute processing tasks,
avoiding single point of failure. Yet, many public cloud com-
puting environments do not support IP multicast for technol-
ogy, security, and business reasons. In addition, the same
public cloud computing environment does not guarantee the
availability of any particular VM that may be utilized by a
worker of the streaming platform.

For a particular VM, both planned and unplanned mainte-
nance activities may occur, and the hardware hosting the
particular VM may fail too, all of the failure and maintenance
activities reduces reliability of unicast video streaming that
counts on reliability of the particular involved VMs in those
public cloud computing environment. Thus, in a streaming
platform, it is preferable for every worker receive an identical
low-latency copy of every input packet to maximize video
source availability. Without available IP multicast in the cloud
computing environment, the streaming platform may build a
component designed specifically to handle the high packet
rate of unicast UDP streams and selectively forward copies of
those packets at the line rate or near the line rate to the correct
workers.

FIG. 11 illustrates a video streaming platform for unicast
video in a cloud computing environment according to one
embodiment of the invention. Streaming platform 1100 is
similar to streaming platform 100 of FIG. 1. The same or
similar references indicate elements or components having
the same or similar functionalities and elements or compo-
nents not essential to the embodiment of the invention is
omitted in FIG. 11.

The component built specifically to handle the high packet
rate of unicast UDP streams is a set of stream distributors
132-134, which along with load balancer 146, is a part of
stream coordinator 170 in one embodiment. Load balancer
146 is a common component of a cloud computing environ-
ment, and it is used to distribute workloads across multiple
computing resources. Load balancing may aim at optimizing
processing of incoming unicast data flow 101 using a variety
of criteria, such as optimizing resource use, maximizing
throughput, minimizing response time, and/or avoiding over-
load of resources.

In one embodiment, each packet of incoming unicast data
flow 101 is sent to one of the set of stream distributors 132-
134. The selection of a stream distributor is at least partially
based on a hash value computed from the source IP: port and
destination IP: port of the packet in one embodiment. Since
one unicast data flow generally generates the same hash
value, all packets of an incoming unicast flow goes through
the same stream distributor. At the selected stream distributor,
each packet is broadcasted to all workers 152-158 of primary
worker cluster 150. Since the unicast UDP packets of incom-
ing unicast data flow 101 are broadcasted to all the workers,
sometimes a stream distributor is referred to as a UDP fanout.

US 9,417,921 B2

17

In another embodiment, the packet is broadcasted to the sub-
set of workers 152-158 which are running processing tasks
for video source associated with the packets.

The set of stream distributors 132-134 may be software
modules implemented in a VM of the hosting cloud comput-
ing environment of streaming platform 1100. The VM is
implemented on a computing system such as a computer
server (often referred to a host of the VM) in the cloud com-
puting environment. The set of stream distributors 132-134
may be integrated to the electronic device serving as orches-
trator cluster 120. The dotted box indicates orchestrator inte-
grated with the stream distributors at reference 130.

With the stream distributors broadcasting UDP packets to
a set of workers processing the video source, the input data to
the task graph for each video source is consistently available
on all workers executing processing tasks for that video
source. That allows for both (1) a partial layer failure where
one of a number of workers executing processing tasks
according to the task graph dies, and (2) rapid restart/connec-
tion on a new worker executing processing tasks during star-
tup and reconnect/failure handling. A stream distributor may
also add functionalities to provide dual network paths for the
input unicast data flows, to handle time-shifted input unicast
data flows, and to provide error correction and packet recon-
struction to the unicast data flows.

Given the expectation that in a cloud computing environ-
ment that workers and VMs hosting the workers may be taken
offline abruptly for maintenance frequently and the signifi-
cant impact on the stream processing when source data is
unavailable, streaming platform 1100 should be designed for
this kind of case happening and still maintaining aggressive
availability target of the streaming platform (e.g., 99.99% per
month SLA). Given the importance of the stream distributors,
it is vital to ensure availability of the stream distributors upon
maintenance and failure associated with the hosting cloud
computing environment of the streaming platform.

FIG. 12 illustrates interaction of a load balancer and a set of
stream distributors according to one embodiment of the
invention. The streaming platform 1100 is the same as the one
of FIG. 11. The same or similar references indicate elements
or components having the same or similar functionalities and
elements or components not essential to the embodiment of
the invention is omitted in FIG. 12. Task boxes 1 to 7 illustrate
the order in which operations are performed according to one
embodiment of the invention.

At task box 1, stream distributor 132 detects initiation of a
maintenance activity on a VM or its host associated with the
stream distributor. The maintenance activity may be as
planned such as a VM entering a maintenance mode, or
unplanned such as VM restarts due to update of the cloud
computing environment, or hardware failure/degrade of the
VM host computer server. The detection of the stream dis-
tributor may be based on receiving a notification (e.g.,
through a callback API) from the VM or its host.

Optionally at task box 2, stream distributor 132 delays the
maintenance activity for a period of time after detecting the
initiation. The delay may be through interactions between
stream distributor 132 and the cloud computing environment.
For example, stream distributor 132 may postpone acknowl-
edgement to the notification from the VM or its host. The
period of time is a short period that is sufficient to allow load
balancer 146 to switch one or more unicast data flows being
sent to stream distributor 132 over to an alternate stream
distributor (e.g., 5~15 seconds). The short period may be
predetermined by the operator of streaming platform 1100 in
one embodiment. In an alternative embodiment, the short

30

40

45

55

18

period ends when stream distributor 132 no longer receives
UDP packets of the one or more unicast data flows.

At task box 3, stream distributor 132 indicates a failure
mode visible to load balancer 146. In one embodiment,
stream distributor 132 sends a failure mode notification to
load balancer 146. In an alternative embodiment, load bal-
ancer 146 sends out periodic probes to the stream distributors
and finds that stream distributor 132 is in a failure mode. The
periodic probe may be a hypertext transfer protocol (HTTP)
health check call to the stream distributor. The stream dis-
tributor in the failure mode responds with a failure code
instead of a success code (e.g. HTTP status code 200).

At task box 4, load balancer 146 switches the one or more
unicast data flows being sent to stream distributor 132 over to
an alternate stream distributor such as stream distributor 134.
A stream distributor often broadcasts many data flows simul-
taneously and once the stream distributor enters a failure
mode, the data flows need to be supported by other stream
distributors. The reallocation of the data flows to the other
stream distributors may use techniques known in the art. The
data flows are not necessarily or even likely reallocated to a
single stream distributor, but rather to multiple stream dis-
tributors. Thus, stream distributor 134 is only an example of
one of multiple alternate stream distributors to stream dis-
tributor 132 when stream distributor 132 broadcasts more
than one unicast data flows.

At task box 5, stream distributor 132 detects completion of
the switch of the one or more unicast data flows by load
balancer 146. The detection may be based on that stream
distributor 132 no longer receives UDP packets of the one or
more unicast data flows from load balancer 146 in one
embodiment. In an alternative embodiment, stream distribu-
tor 132 may utilize a switch completion indication of load
balancer 146 to make the detection.

At task box 6, stream distributor 132 halts distribution of
the one or more unicast data flows to the workers. As the one
or more unicast data flows have now switched to alternate
stream distributor(s), which starts forwarding UDP packets of
the flows to the workers, stream distributor 132 stops for-
warding UDP packets of the flows.

At task box 7, stream distributor 132 optionally causes
performance of the maintenance activity on the VM or the
host associated with the stream distributor. The delay at task
box 2 temporarily prevents the maintenance activity of the
VM/host associated with stream distributor 132 from happen-
ing, and now that the unicast data flows is switched off from
stream distributor 132, the maintenance activity may proceed.
In one embodiment, stream distributor 132 sends an acknowl-
edgement to the notification of initiation of the maintenance
activity to cause the performance.

Through the illustrated operations, the maintenance activ-
ity will have a minimal impact to the unicast data originally
flowing through stream distributor 132 to workers 152-158 as
the unicast data flows will flow through alternate stream dis-
tributors such as stream distributor 134.

FIG. 13 is a flow diagram illustrating operations on a
stream distributor of a streaming platform in a cloud comput-
ing environment upon detecting initiation of a maintenance
activity according to one embodiment of the invention.
Method 1300 may be performed on a stream distributor such
as stream distributor 132 of FIG. 12.

At reference 1302, the stream distributor detects initiation
of'a maintenance activity (e.g., halting operations or reboot)
on a VM or its host associated with the stream distributor, the
VM is apart of a cloud computing environment of the stream-
ing platform system. The host is a computing device of the

US 9,417,921 B2

19

cloud computing environment hosting the VM. The detection
is based on receiving a notification of the maintenance activ-
ity in one embodiment.

Optionally, the stream distributor delays the maintenance
activity for a period of time after detecting the initiation at
reference 1306. The period of time is to allow the load bal-
ancer to switch each of the one or more unicast data flows
currently going through the stream distributor to an alternate
stream distributor. The period of time is predetermined in one
embodiment. In an alternative embodiment, the period of
time ends upon the stream distributor no longer receiving
UDBP packets of the one or more unicast data flows from the
load balancer. In one embodiment, delaying the maintenance
activity includes postponing acknowledgement of a notifica-
tion of the initiation of the maintenance activity through
interactions with API of the cloud computing environment
hosting the streaming platform.

Atreference 1308, the stream distributor indicates a failure
mode, where the failure mode indication is to cause the load
balancer to switch each of the one or more unicast data flows
currently going through the stream distributor to an alternate
stream distributor. In one embodiment, the load balancer
probes the stream distributor at a predetermined interval to
determine whether or not the stream distributor is in the
failure mode. Once the load balancer determines that the
stream distributor is in the failure mode, the load balancer
switches each of the one or more unicast data flows currently
going through the stream distributor to an alternate stream
distributor.

At reference 1310, the stream distributor detects comple-
tion of switch of each of the one or more unicast data flows to
an alternate stream distributor. In one embodiment, the
stream distributor detects the completion based on that the
stream distributor no longer receives the UDP packets of the
one or more unicast data flows from the load balancer. In an
alternative embodiment, stream distributor 132 utilizes a
switch completion indication of the load balancer to make the
detection. At reference 1312, the stream distributor halts dis-
tribution of each of the one or more unicast data flows to the
workers it used to broadcast to.

Atreference 1314, the stream distributor optionally causes
performance of the maintenance activity of the VM or its
hosts associated with the stream distributor. In one embodi-
ment, stream distributor sends an acknowledgement to the
notification of initiation of the maintenance activity to cause
the performance. The cloud computing environment then per-
forms the maintenance activity.

After the maintenance activity is complete, the stream dis-
tributor optionally indicates that it is healthy again so that the
load balancer switches each of the one or more switched away
unicast data flows back to the stream distributor at reference
1322. The timing of the switch back is implementation depen-
dent. Since workers receive the UDP packets of the incoming
data flows during the switch over and the switch back, the
timing does not have significant impact on the workers or
their processing tasks.

Inthe embodiments of the invention described so far, all the
UDP packets and their entire payloads of the unicast data
flows are forwarded to all the workers of the primary worker
cluster (or to the subset of workers performing processing
tasks for each video source). Yet, for some video source
processing, only a subset of the data flows is needed, and one
such a data flow is often called a multiple program transport
stream (MPTS). For example, a streaming platform may
extractonly 10~20 Megabits/sec of data out of a work flow for
a MPTS video source of 50~100 Megabits/sec for use when
processing the work flow.

20

25

40

45

55

20

If the number of workers in the primary worker cluster is
fairly large and the MPTS video source requires a high band-
width, processing all the UDP packets at the stream distribu-
tor may waste network bandwidth at the stream distributor
and risk introducing UDP packet loss in transmitting to the
stream coordinator, processing in the stream coordinator, and
receiving at the workers. Thus the stream coordinator may
perform logical filtering of the desired UDP packets out of the
overall data flow, and only forwarding a portion of the data
flow of the incoming video source for processing by the
workers. The selection of the portion of the data flow is based
at least partially on processing tasks executed by the workers.

Electronic Devices Implementing Embodiments of the
Invention

FIG. 14 is a block diagram illustrating an electronic device
that may serve as an orchestrator of a streaming platform in a
cloud computing environment according to one embodiment
of the invention. The electronic device may be a computing
device (e.g., a computer server) of a cloud computing envi-
ronment). System 1400 may represent any of the orchestrator
described above performing any of the processes or methods
described above. System 1400 can include many different
components. These components can be implemented as inte-
grated circuits (ICs), portions thereof, discrete electronic
devices, or other modules adapted to a circuit board such as a
motherboard or add-in card of a computing system, or as
components otherwise incorporated within a chassis of the
computing system. Note also that system 1400 is intended to
show a high level view of many components of the computing
system. However, it is to be understood that additional com-
ponents may be present in certain implementations and fur-
thermore, different arrangement of the components shown
may occur in other implementations.

In one embodiment, system 1400 includes processor 1401,
memory 1403, and optionally device units 1404-1408 that are
interconnected via a bus or an interconnect 1410. Processor
1401 may represent a single processor or multiple processors
with a single processor core or multiple processor cores
included therein. Processor 1401 may represent one or more
general-purpose processors such as a microprocessor, a cen-
tral processing unit (CPU), or processing device. More par-
ticularly, processor 1401 may be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, or processor implementing
other instruction sets, or processors implementing a combi-
nation of instruction sets. Processor 1401 may also be one or
more special-purpose processors such as an application spe-
cific integrated circuit (ASIC), a cellular or baseband proces-
sor, a field programmable gate array (FPGA), a digital signal
processor (DSP), a network processor, a graphics processor, a
network processor, a communications processor, a crypto-
graphic processor, a co-processor, an embedded processor, or
any other type of logic capable of processing instructions.

Processor 1401 may communicate with memory 1403,
which in an embodiment can be implemented via multiple
memory devices to provide for a given amount of system
memory. Memory 1403 may include one or more volatile
storage (or memory) devices such as random access memory
(RAM), dynamic RAM (DRAM), synchronous DRAM
(SDRAM), static RAM (SRAM), or other types of storage
devices. Memory 1403 may store information including
sequences of instructions that are executed by processor
1401, or any other device units. For example, executable code
and/or data of a variety of operating systems, device drivers,
firmware (e.g., input output basic system or BIOS), and/or
applications can be loaded in memory 1403 and executed by

US 9,417,921 B2

21

processor 1401. An operating system can be any kind of
operating systems, such as, for example, Windows® operat-
ing system from Microsoft®, Mac OS®/iOS® from Apple,
Android® from Google®, Linux®, Unix®, or other real-time
or embedded operating systems such as VxWorks.

Memory 1403 contains operator module 1422, which may
perform operations of an orchestrator in a discussed herein
above in relating to method 200.

System 1400 may optionally further include /O devices
such as device units 1404-1408, including display control
and/or display device unit 1404, wireless transceiver(s) 1405,
video /O device unit(s) 1406, audio 1/O device unit(s) 1407,
and other I/O device units 1408 as illustrated. Wireless trans-
ceiver 1405 may be a WiFi transceiver, an infrared trans-
ceiver, a Bluetooth transceiver, a WiMax transceiver, a wire-
less cellular telephony transceiver, a satellite transceiver (e.g.,
a global positioning system (GPS) transceiver), or other radio
frequency (RF) transceivers, or a combination thereof. Sys-
tem 1400 may also include an ultrasound device unit (not
shown) for transmitting a conference session code.

Video /O device unit 1406 may include an imaging pro-
cessing subsystem (e.g., a camera), which may include an
optical sensor, such as a charged coupled device (CCD) or a
complementary metal-oxide semiconductor (CMOS) optical
sensor, utilized to facilitate camera functions, such as record-
ing photographs and video clips and conferencing. Audio I/O
device unit 1407 may include a speaker and/or a microphone
to facilitate voice-enabled functions, such as voice recogni-
tion, voice replication, digital recording, and/or telephony
functions. Other optional devices 1408 may include a storage
device (e.g., a hard drive, a flash memory device), universal
serial bus (USB) port(s), parallel port(s), serial port(s), a
printer, a network interface, a bus bridge (e.g., a PCI-PCI
bridge), sensor(s) (e.g., a motion sensor such as an acceler-
ometer, gyroscope, a magnetometer, a light sensor, compass,
a proximity sensor, etc.), or a combination thereof. Optional
device units 1408 may further include certain sensors coupled
to interconnect 1410 via a sensor hub (not shown), while other
devices such as a keyboard or thermal sensor may be con-
trolled by an embedded controller (not shown), dependent
upon the specific configuration or design of system 1400.

System 1400 may be coupled to a streaming platform such
as streaming platforms 100 and 1100, and the streaming
platform may be coupled to a stream coordinator, one or more
worker cluster (working and/or backup), all discussed herein
(e.g.,indiscussionrelating to FIGS. 1, 7,and 9). System 1400
may perform methods discussed herein above relating to
FIGS. 2-4 and 5-10.

Note that while system 1400 is illustrated with various
components, it is not intended to represent any particular
architecture or manner of interconnecting the components; as
such details are not germane to embodiments of the present
invention. It will also be appreciated that an electronic device
having fewer components or perhaps more components may
also be used with embodiments of the invention.

FIG. 15 is a block diagram illustrating an electronic device
that may serve as a worker of a streaming platform in a cloud
computing environment according to one embodiment of the
invention. FIG. 15 is similar to FIG. 14, and the same or
similar references indicate elements or components having
the same or similar functionalities. One difference is that
Memory 1503 contains worker module 1522, which may
perform operations of a worker discussed herein above in
relating to method 600, which may include methods 800 and
1000.

FIG. 16 is a block diagram illustrating an electronic device
that may serve as a stream distributor of a streaming platform

20

40

45

55

65

22

in a cloud computing environment according to one embodi-
ment of the invention. FIG. 16 is similar to FIG. 14, and the
same or similar references indicate elements or components
having the same or similar functionalities. One difference is
that Memory 1603 contains stream distributor module 1622,
which may perform operations of a worker discussed herein
above in relating to method 1300.
Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in conferencing technology
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations lead-
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities.
It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and
processes of a conference device, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the confer-
ence device’s registers and memories into other data similarly
represented as physical quantities within the conference
device’s memories or registers or other such information
storage, transmission or display devices.
Note the operations of the flow diagrams in FIGS. 2, 6, 8,
10, and 13 are described with reference to the exemplary
embodiment electronic devices of FIGS. 14-16. However, it
should be understood that the operations of flow diagrams can
be performed by embodiments of the invention other than
those discussed with reference to FIGS. 14-16, and the
embodiments discussed with reference to FIG. 14-16 can
perform operations different than those discussed with refer-
ence to the flow diagrams of FIGS. 2, 6, 8, 10, and 13.
While the flow diagrams in the figures herein above show a
particular order of operations performed by certain embodi-
ments of the invention, it should be understood that such order
is exemplary (e.g., alternative embodiments may perform the
operations in a different order, combine certain operations,
overlap certain operations, etc.).
While the invention has been described in terms of several
embodiments, those skilled in the art will recognize that the
invention is not limited to the embodiments described, can be
practiced with modification and alteration within the spirit
and scope of the appended claims. The description is thus to
be regarded as illustrative instead of limiting.
What is claimed is:
1. A method implemented in an electronic device serving
as an orchestrator managing video and audio stream process-
ing of a streaming platform system, the method comprising:
receiving a request to process a video source, the request
containing parameters describing the video source;

creating a task graph based on the request, wherein the task
graph is a directed acyclic graph of tasks for processing
the video source, wherein each node of the task graph
represents a processing task, and wherein each edge of
the task graph represents a data flow across two process-
ing tasks and corresponding input and output of each
processing task;

estimating resource requirements of each processing task,

where estimating the resource requirement includes any

US 9,417,921 B2

23

one of estimating storage usage of each processing task
during its execution cycle, estimating communication
bandwidth usage of each processing task during its
execution cycle, or estimating computing resource con-
sumption of each processing task during its execution
cycle; and

splitting the task graph into a plurality of subsets, wherein

each subset corresponds to a task group to be executed
by one or more workers of a plurality of workers, where
each worker is a processing unit of the streaming plat-
form system.

2. The method of claim 1, the method further comprising:

after estimating the resource requirement of each process-

ing task, revising the task graph prior to splitting the task

graph into the plurality of subsets based on at least one

of:

the estimated resource requirement of one or more pro-
cessing tasks; and

redundancy requirements of one or more processing
tasks.

3. The method of claim 2, the method further comprising:

after revising the task graph and after splitting the task

graph into the plurality of subsets, estimating the
resource requirement of each processing task again to
accommodate any change as of resource requirement as
a result of the revision.

4. The method of claim 1, the method further comprising:

storing a status of each subset of the task graph; and

updating the status of each subset when the subset is allo-
cated to one or more workers for execution.

5. The method of claim 1, wherein the parameters describ-
ing the video source include at least one of:

a type of the video source;

an address of the video source;

an indication of whether to enable caption or enable adver-

tisement insertion process;

desired video and audio transcoding operations by the

streaming platform system;

desired content protection operations by the streaming

platform system; and

desired publishing operations to output from the streaming

platform system.

6. The method of claim 1, wherein estimating communi-
cation bandwidth usage and computing resource consump-
tion of each processing task include predictions based on the
video resource being ingested in the streaming platform sys-
tem.

7. The method of claim 1, wherein each subset corresponds
to a task group to be executed by a single worker of a plurality
of'workers, and wherein the task graph contains a single input
task.

8. An electronic device to serve as an orchestrator manag-
ing video and audio streams of a streaming platform system,
the electronic device comprising:

anon-transitory machine-readable storage medium to store

the orchestrator; and

a processor coupled to the non-transitory machine-read-

able storage medium, the processor to execute the
orchestrator, the orchestrator configured to receive a
request to process a video source, the request containing
parameters describing the video source, create a task
graph based on the request, wherein the task graph is a
directed acyclic graph of tasks for processing the video
source, wherein each node of the task graph represents a
processing task, and wherein each edge of the task graph
represents a data flow across two processing tasks and
corresponding input and output of each processing task,

10

20

25

30

35

40

45

24

estimate resource requirements of each processing task,
where the estimate of the resource requirements include
any one of an estimate of storage usage of each process-
ing task during its execution cycle, an estimate of com-
munication bandwidth usage of each processing task
during its execution cycle, or an estimate of computing
resource consumption of each processing task during its
execution cycle, and split the task graph into a plurality
of subsets, wherein each subset corresponds to a task
group to be executed by one or more workers of a plu-
rality of workers, where each worker is a processing unit
of the streaming platform system.

9. The electronic device of claim 8, wherein the orchestra-

tor is further configured to:

after estimating the resource requirement of each process-
ing task, revise the task graph prior to splitting the task
graph into the plurality of subsets based on at least one
of:
the estimated resource requirement of one or more pro-
cessing tasks; and
redundancy requirements of one or more processing
tasks.
10. The electronic device of claim 8, wherein the orches-

trator is further configured to:

store a status of each subset of the task graph; and

update the status of each subset when the subset is allocated
to one or more workers for execution.

11. The electronic device of claim 8, wherein the param-

eters describing the video source include at least one of:

a type of the video source;

an address of the video source;

an indication of whether to enable caption or enable adver-
tisement insertion process;

desired video and audio transcoding operations by the
streaming platform system;

desired content protection operations by the streaming
platform system; and

desired publishing operations to output from the streaming
platform system.

12. The electronic device of claim 8, wherein each subset

corresponds to a task group to be executed by a single worker
of a plurality of workers, and wherein the task graph contains
a single input task.

13. A non-transitory machine-readable medium having

instructions stored therein, which when executed by a pro-
cessor, cause the processor to perform operations in an elec-
tronic device serving as an orchestrator managing video and
audio stream processing of a streaming platform system, the

50 operations comprising:

55

[

0

receiving a request to process a video source, the request
containing parameters describing the video source;

creating a task graph based on the request, wherein the task
graph is a directed acyclic graph of tasks for processing
the video source, wherein each node of the task graph
represents a processing task, and wherein each edge of
the task graph represents a data flow across two process-
ing tasks and corresponding input and output of each
processing task;

estimating resource requirements of each processing task,
where estimating the resource requirements include any
one of estimating storage usage of each processing task
during its execution cycle, estimating communication
bandwidth usage of each processing task during its
execution cycle, or estimating computing resource con-
sumption of each processing task during its execution
cycle; and

US 9,417,921 B2

25

splitting the task graph into a plurality of subsets, wherein
each subset corresponds to a task group to be executed
by one or more workers of a plurality of workers, where
each worker is a processing unit of the streaming plat-
form system.

14. The non-transitory machine-readable medium of claim

13, the operations further comprising:

after estimating the resource requirement of each process-
ing task, revising the task graph prior to splitting the task
graph into the plurality of subsets based on at least one
of:

the estimated resource requirement of one or more pro-
cessing tasks; and

redundancy requirements of one or more processing
tasks.

15. The non-transitory machine-readable medium of claim
13, the operations further comprising:

storing a status of each subset of the task graph; and

10

15

26

updating the status of each subset when the subset is allo-

cated to one or more workers for execution.

16. The non-transitory machine-readable medium of claim
13, the operations further comprising:

a type of the video source;

an address of the video source;

an indication of whether to enable caption or enable adver-

tisement insertion process;

desired video and audio transcoding operations by the

streaming platform system;

desired content protection operations by the streaming

platform system; and

desired publishing operations to output from the streaming

platform system.

17. The non-transitory machine-readable medium of claim
13, wherein each subset corresponds to a task group to be
executed by a single worker of a plurality of workers, and
wherein the task graph contains a single input task.

#* #* #* #* #*

